## **USER INSTRUCTIONS** ## WMA2 centrifugal pumps 2 STAGE, VERTICAL-INLINE Original Instructions PCN=71569278 11-10 (E) Installation **Operation** Maintenance riangle These instructions should be read prior to installing, operating, using and maintaining this equipment. Type: WMA2 Size: Frame Serial No: Customer: Customer Order No.: Equipment / Item No.: Pumped Liquid: Capacity: m³/h Head: m Minimum Capacity: Speed: U/min<sup>-1</sup> m<sup>3</sup>/h | CONTENTS | |----------| |----------| | | PAGE | |-------------------------------------------|------| | 1.0 INTRODUCTION AND SAFETY | 4 | | 1.1 GENERAL | 4 | | 1.2 CE MARKING AND APPROVALS | | | 1.3 DISCLAIMER | | | 1.4 COPYRIGHT<br>1.5 DUTY CONDITIONS | | | 1.6 SAFETY | | | 1.7 WARNING LABEL | | | 1.8 SPECIFIC MACHINE PERFORMANCE | 10 | | 1.9 NOISE LEVEL | | | 1.10 CE DECLARATION | | | 2.0 TRANSPORT AND STORAGE | | | 2.1 CONSIGNMENT RECEIPT AND UNPACKING | | | 2.2 HANDLING | | | 2.4 STORAGE | | | 2.5 RECYCLING AND END OF PRODUCT LIFE | | | 3.0 DESCRIPTION | 14 | | 3.1 CONFIGURATION | 14 | | 3.2 NOMENCLATURE | | | 3.3 DESIGN OF MAJOR PARTS | | | 3.4 PERFORMANCE AND OPERATING LIMITS | 14 | | 4.0 INSTALLATION | 14 | | 4.1 LOCATION | | | 4.2 PART ASSEMBLIES4.3 FOUNDATION | | | 4.4 PIPING | | | 4.5 ELECTRICAL CONNECTIONS | | | 4.6 FINAL SHAFT ROTATION CHECK | | | 5.0 COMMISSIONING START-UP, OPERATION | | | AND SHUTDOWN | | | 5.1 PRECOMMISSIONING PROCEDURE | | | 5.2 PUMP LUBRICANTS5.3 IMPELLER CLEARANCE | | | 5.4 DIRECTION OF ROTATION | | | 5.5 GUARDING | | | 5.6 PRIMING AND AUXILIARY SUPPLIES | | | 5.7 STARTING THE PUMP | | | 5.8 OPERATION5.9 STOPPING AND SHUTDOWN | | | 5.10 HYDRAULIC, MECHANICAL AND ELECTRICAL | | | | 19 | | 6.0 MAINTENANCE | 19 | | 6.1 GENERAL | | | 6.2 MAINTENANCE SCHEDULE | | | 6.3 SPARE PARTS | | | 6.5 FASTENER TORQUES | | | 6.6 SETTING IMPELLER CLEARANCE | | | 6.7 DISASSEMBLY | | | 6.8 EXAMINATION OF PARTS | 22 | | 6 9 ASSEMBLY | ,, | | 7.0 AUXILIARIES | 23 | |----------------------------------------------------------|-------------| | 7.1 SEAL AND SEAL SYSTEMS7.2 CHANGING OF MECHANICAL SEAL | | | 8.0 FAULTS; CAUSES AND REMEDIES | 24 | | 9.0 CERTIFICATION | 26 | | 9.0 OLK III IOA HOR | 20 | | 10.0 OTHER RELEVANT DOCUMENTATION MANUALS | I AND | | 10.0 OTHER RELEVANT DOCUMENTATION | I AND<br>26 | ## 1.0 INTRODUCTION AND SAFETY #### 1.1 General These Instructions must always be kept close to product's operating location or directly with the product. Flowserve's products are designed, developed and manufactured with state-of-the-art technologies in modern facilities. The unit is produced with great care and commitment to continuous quality control, utilising sophisticated quality techniques, and safety requirements. Flowserve is committed to continuous quality improvement and being at service for any further information about the product in its installation and operation or about its support products, repair and diagnostic services. These instructions are intended to facilitate familiarization with the product and its permitted use. Operating the product in compliance with these instructions is important to help ensure reliability in service and avoid risks. The instructions may not take into account local regulations; ensure such regulations are observed by all, including those installing the product. Always coordinate repair activity with operations personnel, and follow all plant safety requirements and applicable safety and health laws/regulations. These instructions should be read prior to installing, operating, using and maintaining the equipment in any region worldwide. The equipment must not be put into service until all the conditions relating to safety noted in the instructions have been met. ## 1.2 CE marking and approvals It is a legal requirement that machinery and equipment put into service within certain regions of the world shall conform with the applicable CE Marking Directives covering Machinery and, where applicable, Low Voltage Equipment, Electromagnetic Compatibility (EMC), Pressure Equipment Directive (PED) and Equipment for Potentially Explosive Atmospheres (ATEX). Where applicable the Directives, and any additional Approvals, cover important safety aspects relating to machinery and equipment and the satisfactory provision of technical documents and safety instructions. Where applicable this document incorporates information relevant to these Directives. To establish Approvals and if the product itself is CE Marked check the serial number plate and the Certification. #### 1.3 Disclaimer Information in these User Instructions is believed to be reliable. In spite of all the efforts of Flowserve Corporation to provide sound and all necessary information the content of this manual may appear insufficient and is not guaranteed by Flowserve as to its completeness or accuracy. Flowserve manufactures products to exacting International Quality Management System Standards as certified and audited by external Quality Assurance organisations. Genuine parts and accessories have been designed, tested and incorporated into the products to help ensure their continued product quality and performance in use. As Flowserve cannot test parts and accessories sourced from other vendors the incorrect incorporation of such parts and accessories may adversely affect the performance and safety features of the products. The failure to properly select, install or use authorised Flowserve parts and accessories is considered to be misuse. Damage or failure caused by misuse is not covered by Flowserve's warranty. In addition, any modification of Flowserve products or removal of original components may impair the safety of these products in their use. ## 1.4 Copyright All rights reserved. No part of these instructions may be reproduced, stored in a retrieval system or transmitted in any form or by any means without prior permission of Flowserve. ## 1.5 Duty conditions This product has been selected to meet the specifications of your purchaser order. The acknowledgement of these conditions has been sent separately to the Purchaser. A copy should be kept with these instructions. The product must not be operated beyond the parameters specified for the application. If there is any doubt as to the suitability of the product for the application intended, contact Flowserve for advice, quoting the serial number. If the conditions of service on your purchase order are going to be changed (for example liquid pumped, temperature or duty) it is requested that the user seeks Flowserve's written agreement before start up. ## 1.6 Safety #### 1.6.1 Summary of safety markings These user instructions contain specific safety markings where non-observance of an instruction would cause hazards. The specific safety markings are: #### **DANGER** This symbol indicates electrical safety instructions where non-compliance will involve a high risk to personal safety or the loss of life. This symbol indicates safety instructions where non-compliance would affect personal safety and could result in loss of life. This symbol indicates "hazardous and toxic fluid" safety instructions where non-compliance would affect personal safety and could result in loss of life. CAUTION This symbol indicates safety instructions where non-compliance will involve some risk to safe operation and personal safety and would damage the equipment or property. This symbol indicates "strong magnetic field" safety instructions where non-compliance would affect personal safety, pacemakers, instruments or stored data sensitive to magnetic fields. This symbol indicates explosive atmosphere marking according to ATEX. It is used in safety instructions where non-compliance in the hazardous area would cause the risk of an explosion. This symbol is used in safety instructions to remind not to rub non-metallic surfaces with a dry cloth; ensure the cloth is damp. It is used in safety instructions where non-compliance in the hazardous area would cause the risk of an explosion. The sign is not a safety symbol but indicates an important instruction in the assembly process. This symbol indicates potential risks connected with extremely high temperatures. This symbol indicates potential risks connected with extremely low temperatures. #### 1.6.2 Personnel qualification and training All personnel involved in the operation, installation, inspection and maintenance of the unit must be qualified to carry out the work involved. If the personnel in question do not already possess the necessary knowledge and skill, appropriate training and instruction must be provided. If required the operator may commission the manufacturer / supplier to provide applicable training. Always co-ordinate repair activity with operations and health and safety personnel, and follow all plant safety requirements and applicable safety and health laws/regulations. ## 1.6.3 Safety action This is a summary of conditions and actions to help prevent injury to personnel and damage to the environment and to equipment. For products used in potentially explosive atmospheres section 1.6.4 also applies. PREVENT EXCESSIVE #### **EXTERNAL PIPE LOAD** Do not use pump as a support for piping. Do not mount expansion joints so that their force, due to internal pressure, acts on the pump flange. **!** CAUTION ONLY CHECK DIRECTION OF MOTOR ROTATION WITH COUPLING ELEMENT/ CLAMPING UNIT FASTENED Starting in reverse direction of rotation will damage the pump. **ENSURE CORRECT** #### LUBRICATION (See section 5 Commissioning, startup, operation and shutdown.) START THE PUMP WITH #### **OUTLET VALVE PART OPENED** (Unless otherwise instructed at a specific point in the user instructions.) This is recommended to avoid the risk of overloading and damaging the pump motor at full or zero flow. Pumps may be started with the valve further open only on installations where this situation cannot occur. Pump outlet valve shall be adjusted to comply with the duty following the run-up process (See section 5 Commissioning, startup, operation and shutdown). START THE PUMP WITH #### **OUTLET VALVE FULLY OPEN** This is recommended to avoid the risk of overloading and damaging the pump motor where greater power is taken at low or shut off flow. Pump outlet valve shall be adjusted to comply with the duty following the run-up process (See section 5 Commissioning, startup, operation and shutdown). **CAUTION** NEVER RUN THE PUMP DRY **CAUTION** INLET VALVES TO BE FULLY OPEN WHEN PUMP IS RUNNING Running the pump at zero flow or below the recommended minimum flow continuously will cause damage to the seal. **CAUTION** DO NOT RUN THE PUMP AT ABNORMALLY HIGH OR LOW FLOW RATES Operating at a flow rate higher than normal or at a flow rate with no back pressure on the pump may overload the motor and cause cavitation. Low flow rates may cause a reduction in pump/bearing life, overheating of the pump, instability and cavitation/vibration. **CAUTION** When ambient temperatures are likely to drop below freezing point, the pump and any cooling and flushing arrangements must be drained or otherwise protected. #### HANDLING COMPONENTS Many precision parts have sharp corners and the wearing of appropriate safety gloves and equipment is required when handling these components. To lift heavy pieces above 25 kg (55 lbs) use a crane corresponding to the mass and in accordance with current local regulations. #### **DANGER** NEVER DO MAINTENANCE WORK WHILST THE UNIT IS CONNECTED TO POWER #### HAZARDOUS LIQUIDS When the pump is handling hazardous liquids care must be taken to avoid exposure to the liquid by appropriate sitting of the pump, limiting personnel access and by operator training. If the liquid is flammable and/or explosive strict safety procedures must be applied. Gland Packing must not be used when pumping hazardous liquids. DRAIN PUMP AND ISOLATE PIPEWORK BEFORE DISMANTLING THE PUMP The appropriate safety precautions should be taken where the pumped liquids are hazardous. FLUORO-ELASTOMERS (When fitted) When a pump has experienced temperatures over 250 °C (482 °F), partial decomposition of fluoroelastomers (example: Viton) will occur. In this condition these are extremely dangerous and skin contact must be avoided. GUARDS MUST NOT BE REMOVED WHILE PUMP IS OPERATIONAL #### THERMAL SHOCK Rapid changes in the temperature of the liquid within the pump can cause thermal shock, which can result in damage or breakage of components and should be avoided. ## NEVER APPLY HEAT TO REMOVE **IMPELLER** Trapped lubricant or vapour could cause an explosion. #### HOT AND COLD PARTS If hot or freezing components or auxiliary heating supplies can present a danger to operators, they must be shielded to avoid accidental contact. If complete protection is not possible, the machine access must be limited to maintenance staff only. Note: bearing housings must not be insulated and drive motors and bearings may be hot. If the temperature is greater than 68 °C (155 °F) or below 5 °C (41 °F) in a restricted zone, or exceeds local regulations, action as above shall be taken. ## 1.6.4 Products used in potentially explosive atmospheres Measures are required to: - Avoid excess temperature - Prevent build up of explosive mixtures - Prevent the generation of sparks - Prevent leakages - Maintain the pump to avoid hazard The following instructions for pumps and pump units when installed in potentially explosive atmospheres must be followed to help ensure explosion protection. Both electrical and non-electrical equipment must meet the requirements of European Directive 94/9/EC. #### 1.6.4.1 Scope of compliance Use equipment only in the zone for which it is appropriate. Always check that the driver, drive coupling assembly, seal and pump equipment are suitably rated and/or certified for the classification of the specific atmosphere in which they are to be installed. Where Flowserve has supplied only the bare shaft pump, the Ex rating applies only to the pump. The party responsible for assembling the pump set shall select the coupling, driver and any additional equipment, with the necessary CE Certificate/ Declaration of Conformity establishing it is suitable for the area in which it is to be installed. The output from a variable frequency drive (VFD) can cause additional heating affects in the motor and so, for pump sets with a VFD, the ATEX Certification for the motor must state that it covers the situation where electrical supply is from the VFD. This is particular requirement still applies even if the VFD is in a safe area. #### 1.6.4.2 Marking An example of ATEX equipment marking is shown below. The actual classification of the pump will be engraved on the nameplate. Maximum surface temperature (Temperature Class) (see section 1.6.4.3) #### 1.6.4.3 Avoiding excessive surface temperatures ENSURE THE EQUIPMENT TEMPERATURE CLASS IS SUITABLE FOR THE HAZARD ZONE Pumps have a temperature class as stated in the ATEX Ex rating on the nameplate. These are based on a maximum ambient of 40 °C (104 °F); refer to Flowserve for higher ambient temperatures. The surface temperature on the pump is influenced by the temperature of the liquid handled. The maximum permissible liquid temperature depends on the temperature class and must not exceed the values in the table that follows. The temperature rise at the seals and bearings and due to the minimum permitted flow rate is taken into account in the temperatures stated. | Temperature<br>class to<br>EN 13463-1 | Maximum<br>surface<br>temperature<br>permitted | Temperature limit of liquid handled (* depending on material and construction variant - check which is lower) | | | | |---------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--| | T6 | 85 °C (185 °F) | Consult Flowserve | | | | | T5 | 100 °C(212 °F) | Consult Flowserve | | | | | T4 | 135 °C (275 °F) | 110 °C (230 °F) * | | | | | T3 | 200 °C (392 °F) | 175 °C (347 °F) * | | | | | T2 | 300 °C (572 °F) | 270 °C (518 °F) * | | | | | T1 | 450 °C (842 °F) | 350 °C (662 °F) * | | | | # The responsibility for compliance with the specified maximum liquid temperature is with the plant operator. Temperature classification "Tx" is used when the liquid temperature varies and when the pump is required to be used in differently classified potentially explosive atmospheres. In this case the user is responsible for ensuring that the pump surface temperature does not exceed that permitted in its actual installed location. Do not attempt to check the direction of rotation with the coupling element/pins fitted due to the risk of severe contact between rotating and stationary components. Where there is any risk of the pump being run against a closed valve generating high liquid and casing external surface temperatures it is recommended that users fit an external surface temperature protection device. Avoid mechanical, hydraulic or electrical overload by using motor overload trips or a Power Monitor and make routine vibration monitoring. In dirty or dusty environments, regular checks must be made and dirt removed from areas around close clearances, bearing housings and motors. # 1.6.4.4 Preventing the build up of explosive mixtures ENSURE THE PUMP IS PROPERLY FILLED AND VENTED AND DOES NOT RUN DRY Ensure the pump and relevant suction and discharge pipeline system is totally filled with liquid at all times during the pump operation, so that an explosive atmosphere is prevented. In addition it is essential to make sure that seal chambers, auxiliary shaft seal systems and any heating and cooling systems are properly filled. If the operation of the system cannot avoid this condition the fitting of an appropriate Dry Run protection device is recommended (eg liquid detection or a Power Monitor). To avoid potential hazards from fugitive emissions of vapour or gas to atmosphere the surrounding area must be well ventilated. #### 1.6.4.5 Preventing sparks To prevent a potential hazard from mechanical contact the coupling guard must be non-sparking and anti-static. To avoid the potential hazard from random induced current generating a spark the earth contact on the baseplate must be used. Avoid electrostatic charge: do not rub non-metallic surfaces with a dry cloth; ensure cloth is damp. The coupling must be selected to comply with 94/9/EC and correct alignment must be maintained. #### 1.6.4.5 Preventing leakage The pump must only be used to handle liquids for which it has been approved to have the correct corrosion resistance. Avoid entrapment of liquid in the pump and associated piping due to closing of suction and discharge valves, which could cause dangerous excessive pressures to occur if there is heat input to the liquid. This can occur if the pump is stationary or running. Bursting of liquid containing parts due to freezing must be avoided by draining or protecting the pump and ancillary systems. Where there is the potential hazard of a loss of a seal barrier fluid or external flush, the fluid must be monitored. If leakage of liquid to atmosphere can result in a hazard, the installation of a liquid detection device is recommended. # 1.6.4.6 Maintenance to the centrifugal pump to avoid the hazard CORRECT MAINTENANCE IS REQUIRED TO AVOID POTENTIAL HAZARDS WHICH GIVE A RISK OF EXPLOSION The responsibility for compliance with maintenance instructions is with the plant operator. To avoid potential explosion hazards during maintenance, the tools, cleaning and painting materials used must not give rise to sparking or adversely affect the ambient conditions. Where there is a risk from such tools or materials, maintenance must be conducted in a safe area. It is recommended that a maintenance plan and schedule is adopted (see section 6, *Maintenance*).to include the following. - a) Any auxiliary systems installed must be monitored, if necessary, to ensure they function correctly. - Gland packings must be adjusted correctly to give visible leakage and concentric alignment of the gland follower to prevent excessive temperature of the packing or follower. - c) Check for any leaks from gaskets and seals. The correct functioning of the shaft seal must be checked regularly - d) Check bearing lubricant level, and if the hours run show a lubricant change is required. - e) Check that the duty condition is in the safe operating range for the pump. - f) Check vibration, noise level and surface temperature at the bearings to confirm satisfactory operation. - g) Check dirt and dust is removed from areas around close clearances, bearing housings and motors. - h) Check coupling alignment and re-align if necessary. ## 1.7 Warning label **Pump Division** # AWARNING #### **ESSENTIAL PROCEDURES BEFORE STARTING!** INSTALL AND OPERATE EQUIPMENT ONLY IN ACCORDANCE WITH THE INSTRUCTION MANUAL SUPPLIED SEPERATELY! **ENSURE GUARDS ARE SECURELY IN PLACE!** **ENSURE CORRECT DIRECTION OF ROTATION!** ENSURE ALL EXTERNAL CONNECTIONS TO THE PUMP/ SHAFT SEALING AND DRIVER ARE CONNECTED AND OPERATIONAL! FILL PRIME UNIT AND SYSTEM. DO NOT RUN DRY! SEE MANUAL FOR TOLERANCES. ENSURE CORRECT DRIVER DIRECTION OF ROTATION WITH COUPLING ELEMENT/ PINS REMOVED. OTHERWISE SERIOUS DAMAGE MAY RESULT! THIS MACHINE MUST BE FILLED WITH OIL BEFORE STARTING! FAILURE IN FOLLOWING THESE PROCEDURES MAY RESULT IN PERSONAL INJURY/ OR EQUIPEMENT DAMAGE! ## 1.8 Specific machine performance For performance parameters see section 1.5, *Duty conditions*. When the Contract requirement specifies these to be incorporated into user instructions these are included here. Where performance data has been supplied separately to the purchaser these should be obtained and retained with these user instructions if required. ## 1.9 Noise level Attention must be given to the exposure of personnel to the noise, and local legislation will define when guidance to personnel on noise limitation is required, and when noise exposure reduction is mandatory. This is typically 80 to 85 dBA. The usual approach is to control the exposure time to the noise or to enclose the machine to reduce emitted sound. You may have already specified a limiting noise level when the equipment was ordered, however if no noise requirements were defined, then attention is drawn to the following table to give an indication of equipment noise level so that you can take the appropriate action in your plant. Pump noise level is dependent on a number of operational factors, flow rate, pipework design and acoustic characteristics of the building, and so the values given are subject to a 3 dBA tolerance and cannot be guaranteed. Similarly the motor noise assumed in the "pump and motor" noise is that typically expected from standard and high efficiency motors when on load directly driving the pump. Note that a motor driven by an inverter may show an increased noise at some speeds. If a pump unit only has been purchased for fitting with your own driver then the "pump only" noise levels in the table should be combined with the level for the driver obtained from the supplier. Consult Flowserve or a noise specialist if assistance is required in combining the values. It is recommended that where exposure approaches the prescribed limit, then site noise measurements should be made. The values are in sound pressure level $L_{pA}$ at 1 m (3.3 ft) from the machine, for "free field conditions over a reflecting plane". For estimating sound power level $L_{WA}$ (re 1 pW) then add 14 dBA to the sound pressure value. | | | | Oc | tave MI | D BAND | frequ | ency [l | Hz] | | |----------|----|----|----|---------|--------|-------|---------|-----|----| | 3000 rpm | 72 | 62 | 66 | 66 | 64 | 64 | 64 | 62 | 57 | | 1500 rpm | 66 | 56 | 60 | 60 | 58 | 58 | 58 | 56 | 51 | | 3600 rpm | 74 | 64 | 68 | 68 | 66 | 66 | 66 | 64 | 59 | | 1800 rpm | 67 | 57 | 61 | 61 | 59 | 59 | 59 | 57 | 52 | Sound pressure readings are for information only and are not subject to guarantee by Flowserve/IDP. Decibel readings do not include driver or system noise. Pump tested at 100% of the best efficiency point at max.impeller diameter with water. #### dB correction for combining noises (pump+motor) | Difference between two levels to be combined, dB | 0 | 1 | 2 | 4 | 6 | 9 | 10 | |---------------------------------------------------------------|---|-----|---|-----|---|-----|----| | Add to the higher level to obtain the combined noise level,dB | 3 | 2.5 | 2 | 1.5 | 1 | 0.5 | 0 | #### Note: - The values showed are measured at a distance of 1 mt. (horizontally) from major pump surfaces and 1.5 mt. above the floor. - 2) The values shown are expressed in dB (A) - 3) For Noise Test Procedure refer to Works Standard L-109 - 4) The values shown have been derived from actual noise-test data and are based on the following conditions: - Equipment is located in a free field above a reflecting plane in which the reduction noise level in all directions is 6db in each octave band for each doubling of distance. - Background noise is 10dB minimum below all noise levels in each octave band. - The values shown are at a distance of 1 meter (horizontally) from the major pump surface and 1,5 meters above the floor, using a standard pressure reference of 0,00002 newton per square meter. - Overall noise level, dB(A) is determined at points of maximum noise level and the values of all mid-band frequences are basis A scale readings. When the required condition flow is outside the range of 75 to 125% BEP, a part load correction (PLC) must be added to the noise level as follows: | Percent of BEP @ required impeller diameter | PLC in dB | |---------------------------------------------|-----------| | 74 to 62 or 126 to 136 | +1 | | 61 to 50 or 137 to 150 | +2 | | 49 to 38 | +3 | | 37 to 25 | +4 | #### 1.10 CE Declaration Austria, A-2345 Brunn am Geb., Industriestraße B Nr. 6, Tel:++43 2236 31530, Fax: ++43 2236 33430 ## DECLARATION OF CONFORMITY ## Section 1.0 MACHINE DESCRIPTION Serial No Equipment/Item Purchase Order Model / Type MAWP CEEX Hydro. Pressure barg barg Material Date DD/MM/YY Flow m³/h Head Speed Min-1 / RPM Motor kW Hz Volts Amps Connection Country of Destination ## Section 2.0 APPLICABLE DIRECTIVES / REGULATIONS - Machinery Directive 2006/42/EC Annex IIA - EMC Directive 2004/108/EC Low Voltage Directive 2006/95/EC (73/23/EEC text identical). Only applicable to products with electrical devices with voltage input 50-1000 VAC and not applicable to hazardous areas to 94/9/EC Explosive Atmospheres Directive 94/9/EC (ATEX). Only applicable when the $\langle \xi x \rangle$ marking appears in section 1.0 Equipment without the (Ex) marking must not be used in potentially explosive atmospheres. Notified Body holding the ATEX Technical Dossier - SIRA (518) Eccleston, ChesterCH4 9JN, United Kingdom #### Section 3.0 APPLICABLE STANDARDS / SPECIFICATIONS - EN809:1998+A1:2009, EN953:1997+A1:2009, ISO13857:2008, ISO12100-1:2003+A1:2009, ISO12100-2:2003+A1:2009 - EN13463-1:2009, EN13463-5:2003, EN13463-6:2004, EN13463-8:2003 (when applies for compliance with 94/9/EC) - API 610 8<sup>th</sup> ,9<sup>th</sup>or 10<sup>th</sup> ed. as applicable API 682 1<sup>st</sup> ,2<sup>nd</sup>or 3<sup>th</sup> ed. as applicable #### Section 4.0 DECLARATION We, Flowserve (Austria) GmbH, at the above address, declare that under our sole responsibility for the supply of the machinery defined in SECTION 1.0 above, the said machinery complies with all the applicable Directives and Regulations set out in SECTION 2.0 above and with all the essential health and safety requirements applying to it when installed, operated and maintained in accordance with the applicable User Instruction manual(s). > Signed: Dipl.Ing.Goran Rakic Authorised Techn.Manager Date: 24.11.2010 ## 2.0 TRANSPORT AND STORAGE ## 2.1 Consignment receipt and unpacking Immediately after receipt of the equipment it must be checked against the delivery/ shipping documents for its completeness and that there has been no damage in transportation. Any shortage and or damage must be reported immediately to Flowserve and received in writing within one month of receipt of the equipment. Latter claims cannot be accepted. Check any create/boxes/wrappings for any accessories or spare parts, which may be packed separately with the equipment or attached to side walls of the box or equipment. Each product has a unique serial number. Check that this number corresponds with that advised and always quote this number in correspondence as well as when ordering spare parts or further accessories. ## 2.2 Handling Boxes, crates, pallets or cartons may be unloaded using fork lift vehicles or slings dependent on their size and construction. ## 2.3 Lifting Four lifting lugs are provided on the baseplate to lift the complete unit. Take care by applying slings or ropes about auxiliary piping and seal systems. A crane must be used for all pump sets in excess of 25kg (55lb). Fully trained personnel must carry out lifting, in accordance with local regulations. The driver and pump weights are recorded on their respective nameplates. ## 2.4 Storage If the unit will not be put immediately into service, it should be stored in a dry room. To avoid any damage during the storage period, the influence of any low or high frequency vibration must be totally inhibited. If the pump is delivered sealed in a plastic-wrapper, it is of max. importance to avoid any damage of that wrapper, because this will protect the pump against humidity. Therefore it must be checked if this wrapper has become cracked and if so, the wrapper must be renewed. #### 2.4.1 Long period storage If the pump is delivered in a plastic bag, the preservations stands up for one year. If the storage period exceeds this time, the preservation must be checked and renewed. Also the air tight plastic bag must be changed. Moreover we recommend to order a Flowserve Service Engineer for checking the pump before the first start up. ## 2.5 Recycling and end of product life At the end of the service life of the product or its parts, the relevant materials and parts should be recycled or disposed of using an environmentally acceptable method and local regulations. If the product contains substances, which are harmful to the environment, these should be removed and disposed of in accordance with current regulations. This also includes the liquids and or gases in the "seal system" or other utilities. Make sure that hazardous substances are disposed of safety and that the correct personal protective equipment is used. The safety specifications must be in accordance with the current regulations at all times. ## 3.0 DESCRIPTION ## 3.1 Configuration The model WMA2 belongs to Flowserves family of API 610 vertical inline pumps. The hydraulics are designed for operating flexibility and consist of: - a semi open radial vaned impeller to guarantee optimum performance - a circular volute with a single caned diffuser to minimize hydraulic forces The pump unit is available in two stage opposed impeller configuration. For low NPSHA applications an inducer is available. The sense of rotation of the pump is clockwise (CW), looking from the coupling to the shaft end of the pump. #### 3.2 Nomenclature Example: 2x3x12 WMA2 - Ind. - Discharge flange in inch - 3 Suction flange in inch - 12 max. impeller size in inch - 2 2 stage - Ind indicates Inducer as option #### 3.3 Design of major parts #### 3.3.1 Pump casing Vertical inline design with flanged suction elbow and integrated baseplate. It is directly flanged to the motor stand, which itself is flanged to the motor. Back pull out design for easy maintenance, so the casing remains on its foundation in case of repair. #### 3.3.2 Hydraulics A circular volute in combination with a single caned diffuser is inserted into the pump casing. A radial vaned semi open impeller is used to ensure optimal performance. ## 3.4 Performance and operating limits CAUTION In the interest of operator safety the unit must not be operated above the nameplate conditions. Such operation could result in unit failure causing injury to operating personnel. Consult instruction book for correct operation and maintenance of the pump and its supporting components. ## 4.0 INSTALLATION Equipment operated in hazardous locations must comply with the relevant explosion protection regulations, see section 1.6.4, Products used in potentially explosive atmospheres. #### 4.1 Location The pump should be located to allow room for access, ventilation, maintenance and inspection with ample headroom for lifting and should be as close as practicable to the supply of liquid to be pumped. Refer to the general arrangement drawing for the pump set. #### 4.2 Part Assemblies The pumps are delivered completely mounted and prealigned with the motor. Also the shaft seal is in the correct position. Final alignment after complete installation is necessary. If drivers and/or seal systems are delivered separately, follow the assembly procedure in section 6.9. #### 4.3 Foundation The foundation shall be located on a place that allows a minimum of pipe work and that is easily accessible for inspection during operation. According to the environment the foundation may consist of concrete or of steel. It must be rigid and heavy enough to absorb normal vibrations and shocks. #### 4.3.1 Horizontal alignment of the baseplate Horizontal alignment is done with levelling screws. Use a spirit level for correct horizontal alignment of the baseplate. The max. misalignment is 0.5 mm/m baseplate length. #### 4.3.2 Steel foundation When the pump unit is mounted directly on structural steel frame, it shall be well supported by constructural beams. It is recommended to check the natural frequency of the steel frame, because it shall not coincide with the pump speed. The exact horizontal alignment is very important! #### 4.3.3 Concrete foundation A concrete foundation must have an exact horizontal alignment and must be placed on solid ground. First a basic foundation shall be built with square shaped holes for embedding the foundation bolts. After putting the base plate into the foundation the proper alignment can be obtained by adjusting it with shims under the base plate. Now insert the foundation bolts and grout the space between the basic foundation and the base plate with grouting cement (refer to illustration) It is very helpful to use a properly made and stable wooden frame around the base plate. So the grouting cement will not flow side. When the grouting is totally set and hardened the foundation bolts shall be tightened in a firm and symmetrical way. ## 4.4 Piping #### 4.4.1 General Protective covers are fitted to the pipe connections to prevent foreign particles entering during transportation and installation. Ensure that these covers are removed from the pump before connecting any pipes. Maximum forces and moments allowed on the pump flanges vary with the pump size and type. To minimize these forces and moments which may cause misalignment, hot bearings, worn couplings, vibration and a possible failure of the pump, the following points shall be strictly followed: a) Prevent excessive external pipe load. - b) Do not connect piping by applying external force (use of wrenches, crane,...). Piping shall be aligned without residual stress. - c) Do not mount expansion joints so that their force, due to internal pressure, acts on the pump flange. Fitting an isolator and non-return valves can allow easier maintenance. Never throttle pump on suction side and never place a valve directly on the pump inlet nozzle. A non-return valve shall be located in the discharge pipework to protect the pump from excessive back pressure and hence reverse rotation when the unit is stopped. Piping and fittings shall be flushed before use. To avoid damages of the pump install a Y-strainer or a strainer of 40 mesh. Piping for corrosive liquids shall be arranged to allow pump flushing before removal of a unit. #### 4.4.2 Drain This connection is used for total drainage of the pump casing. A flanged drain is standard and can be optionally equipped with various kinds of valves. Refer to GA drawing for details of the drain connection. By pumping toxic or explosive media, provide the necessary security actions, e.g. flushing with nitrogen. #### 4.5 Electrical connections #### DANGER Electrical connections must be made by a qualified Electrician in accordance with the relevant local national and international regulations. It is important to be aware of the EUROPEAN DIRECTIVE on hazardous areas where compliance with IEC60079-14 is an additional requirement for making electrical connections. ## DANGER It is important to be aware of the EUROPEAN DIRECTIVE on electromagnetic compatibility when wiring up and installing equipment on site. Attention must be paid to ensure that the techniques used during wiring/installation do not increase electromagnetic emissions or decrease the electromagnetic immunity of the equipment, wiring or any connected devices. If in any doubt contact Flowserve for advice. #### **DANGER** The motor must be wired up in accordance with the motor manufacturer's instructions (normally supplied within the terminal box) including any temperature, earth leakage, current and other protective devices as appropriate. The identification nameplate should be checked to ensure the power supply is appropriate. A device to provide emergency stopping must be fitted. If not supplied pre-wired to the pump unit the controller/starter electrical details will also be supplied within the controller/starter. For electrical details on pump sets with controllers see the separate wiring diagram. See section 5.5, *Direction of rotation* before connecting the motor to the electrical supply. #### 4.6 Final shaft rotation check After connecting piping to the pump, rotate the shaft several times by hand to ensure there is no seizure and all parts are free. ## 5.0 <u>COMMISSIONING START-UP,</u> <u>OPERATION AND SHUTDOWN</u> These operations must be carried out by fully qualified personnel. #### 5.1 Precommissioning procedure - The pump must be completely filled with liquid to avoid running dry and to guarantee a correct performance of the pump. - b) During filling the pump shall reach the specified temperature, so pumps for hot liquids (T > 100 °C (212 °F)) shall be warmed up by preflushing. - Check the sense of rotation of the pump. Sense of rotation is clockwise viewed to the drive end of the pump. - d) The pump rotor and the shaft seal must be in correct axial position. Mounting plates of mechanical seal must be locked at the seal gland in open position. Drive-collar of the mechanical seal sleeve must be tightened. - e) Check the readiness of all auxiliary systems (seal sys., lubrication sys.,...) for start up. - f) All pipe work, including the internal and the auxiliary pipe work, must be connected correctly and must be absolutely tight. Check the tightness of all connections of the auxiliary pipe work. The suction valve must be open, the discharge valve shall be closed. - g) Turn the pump by hand, if required with the help of a lever, to check the free rotation of the rotor. The rotor must turn uniformly and noiselessly. Some - resistance may be felt due to friction in bearings and seals. - h) Check the readiness of the driver for start up. Refer to the manual of the driver (preheating for explosion proof E-motor). ## 5.2 Pump Lubricants #### 5.2.1 Lubrication Bearings are within the motor and grease lubricated. Refer to motor manufacturer's instruction for quantity and type of grease, regreasing, intervalls ect. ## **5.2.2 Lubrication Table** | | Seal System / Pumped Liquid | Quench-Oil | General Features | |----------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------| | Barrier/Buffer Fluid for<br>Mech. Seal | Tandem Seal to -40 °C (-40 °F) Back to back Seal with gascoffer-dam | - Raffinated Hydraulic Oil<br>- Synthetic Oil<br>- Mixture of water / glykol | appr. 10-15 cST at 40°C<br>(104 °F) | | | Conventional back to back Seal | ATTENTION: Do not use Methanol | below -40°C (-40 °F)<br>Pourpoint vaporization<br>above 80°C (176 °F) | | | Tandem Seal to -60°C (-76 °F) | Ethanol/Propanol | | The sequence of the suppliers of the lubricants does not represent any indication of their superiority. $<sup>^1</sup>$ Viscosity at 40 °C (104 °F) in cSt [mm²/s] DIN 51562 ## 5.3 Impeller clearance Correct axial rotor setting is essential for trouble free operation of the pump. #### 5.3.1 Adjusting of the rotor Because of the importance of the axial gap between pump casing and the impeller for a perfect operation of the pump, it has to be adjusted carefully. So follow this procedure: Fit the stuffing box lantern on the motor. Push now the pump shaft on the motor shaft. Screw down the pump casing cover on the stuffing box lantern. At the pump casing cover you can find assembling jigs. When the shaft is in correct position, the jigs have to lock in a groove on the shaft. When the pump shaft must pushed more to the motor, it can be executed by slight knocking on the shaft end. When the pump shaft must pulled away from the motor, so use therefore the screws at the shoulder on the shaft end to press it from the motor shaft. ## 5.4 Direction of rotation The sense of rotation of the pump is clockwise (CW); looking from the coupling to the shaft end of the pump. The rotation of the driver shall be checked. #### 5.5 Guarding Be sure that the coupling guard is mounted correctly at the baseplate prior to start up. ## 5.6 Priming and auxiliary supplies The pump must be completely primed prior to start up. - a) The pump casing is considered as self venting, so no vent connections are provided. - Auxiliary systems, e.g. barrier /buffer fluid systems, cooling circuits, shall be filled according to the user instructions. ## 5.7 Starting the pump Start the driver according to the specification. (Refer to driver IOM). Note: Pumps are usually started against closed discharge valve. b) Check the discharge and suction pressure gauge to verify the pumps delivered head. Open the discharge valve slowly, until the pump reaches the specified operation point. The pump must operate smoothly, and the vibration must be below 5 mm/s (0.2 in./sec) (API 610 vibration limits). The discharge valve must be opened within 30 sec. after start up. Longer operation against closed discharge valve will damage the pump. If a minimum flow valve is installed, take pressure gauge readings to verify the correct operation. Note: If the backpressure of the discharge pipe is sufficient, pumps can be started against open valve. Ensure that your driver is capable deliver the higher torque required by starting against open valve. To prevent the pump from reverse rotation after shut down, the installation of a check valve is recommended. Although the pump is not affected by reverse rotation because of spezial couppling design , it can be an issue with the driver. Check the discharge and suction pressure gauge to verify the pumps delivered head. The pump must operate smoothly, and the vibration must be below 5 mm/s (0.2 in./sec) (API 610 vibration limits). If a minimum flow valve is installed, take pressure gauge readings to verify the correct operation. - c) Check the pipe system against any leakage. - d) Check the mechanical seal against any leakage. Note: Right after start up a minor leakage of the mechanical seal is quite normal. Normally this leakage disappears after few minutes of operation. ## 5.8 Operation - a) Verify that the pump is operating within the specified limits, min/max flow, pressure, temperature, vibration, power - From time to time check the pump shaft seal. Leakage of 10 20 drops per hour is also with a mechanical shaft seal unavoidable. - Observe the power consumption of the pump to detect excessive wear. #### 5.9 Stopping and Shutdown - a) Close the outlet valve, but ensure that the pump runs in this condition for no more than a few seconds. - b) Stop the pump. - c) Switch off flushing and/or cooling/ heating liquid supplies at a time appropriate to the process. - For prolonged shut-downs and especially when ambient temperatures are likely to drop below freezing point, the pump and any cooling and flushing arrangements must be drained or otherwise protected. Note: For automatic start/stop operation of the pump, ensure that all steps described in chapter 5.6, 5.7, 5.8 and 5.9 are implemented in the control logic. # 5.10 Hydraulic, mechanical and electrical duty This product has been supplied to meet the performance specifications of your purchase order, however it is understood that during the life of the product these may change. The following notes will help the user to decide how to evaluate the implications of any change. If in doubt contact your nearest Flowserve office. #### 5.10.1 Specific gravity (SG) Pump capacity and total head in meters (feet) do not change with SG, however pressure displayed on a pressure gauge is directly proportional to SG. Power absorbed is also directly proportional to SG. It is therefore important to check that any change in SG will not overload the pump driver or overpressurize the pump. #### 5.10.2 Viscosity For a given flow rate the total head reduces with increased viscosity and increases with reduced viscosity. Also for a given flow rate the power absorbed increases with increased viscosity, and reduces with reduced viscosity. It is important that checks are made with your nearest Flowserve office if changes in viscosity are planned. #### 5.10.3 Pump speed Changing pump speed effects flow, total head, power absorbed, NPSHR, noise and vibration. Flow varies in direct proportion to pump speed. Head varies as speed ratio squared. Power varies as speed ratio cubed. If increasing speed it is important therefore to ensure the maximum pump working pressure is not exceeded, the driver is not overloaded, NPSHA>NPSHR, and that noise and vibration are within local requirements and regulations. #### 5.10.4 Net positive suction head (NPSHA) NPSH available (NPSHA.) is a measure of the energy available in the pumped liquid, above its vapour pressure, at the pump suction branch. NPSH required (NPSHR.) - is a measure of the energy required in the pumped liquid, above its vapour pressure, to prevent the pump from cavitating. It is important that NPSHA >NPSHR. The margin between NPSHA >NPSHR should be as large as possible. If any change in NPSHA is proposed, ensure these margins are not significantly eroded. Refer to the pump performance curve to determine exact requirements particularly if flow has changed. If in doubt please consult your nearest Flowserve office for advise and details of the minimum allowable margin for your application. #### 5.10.5 Pumped flow Flow must not fall outside the minimum and maximum continuous safe flow shown on the pump performance curve and/or data sheet. ## **6.0 MAINTENANCE** #### 6.1 General It is the plant operator's responsibility to ensure that all maintenance, inspection and assembly work is carried out by authorized and qualified personnel who have adequately familiarized themselves with the subject matter by studying this manual in detail. (See also section 1.6.2.) Any work on the machine must be performed when it is at a standstill. It is imperative that the procedure for shutting down the machine is followed, as described in section 5.9. On completion of work all guards and safety devices must be re-installed and made operative again. Before restarting the machine, the relevant instructions listed in section 5, *Commissioning*, *start up*, *operation and shut down* must be observed. Oil and grease leaks may make the ground slippery. Machine maintenance must always begin and finish by cleaning the ground and the exterior of the machine. If platforms, stairs and guard rails are required for maintenance, they must be placed for easy access to areas where maintenance and inspection are to be carried out. The positioning of these accessories must not limit access or hinder the lifting of the part to be serviced. When air or compressed inert gas is used in the maintenance process, the operator and anyone in the vicinity must be careful and have the appropriate protection. Do not spray air or compressed inert gas on skin. Do not direct an air or gas jet towards other people. Never use air or compressed inert gas to clean clothes. Before working on the pump, take measures to prevent an uncontrolled start. Put a warning board on the starting device with the words: "Machine under repair: do not start". With electric drive equipment, lock the main switch open and withdraw any fuses. Put a warning board on the fuse box or main switch with the words: "Machine under repair: do not connect". Never clean equipment with inflammable solvents or carbon tetrachloride. Protect yourself against toxic fumes when using cleaning agents. #### 6.2 Maintenance schedule It is recommended that a maintenance plan and schedule is adopted, in line with these User Instructions, to include the following: Any auxiliary systems installed must be monitored, if necessary, to ensure they function correctly. - a) Check for any leaks from gaskets and seals. The correct functioning of the shaft seal must be checked regularly. - b) Check bearing lubricant level, and if the hours run show a lubricant change is required. - c) Check that the duty condition is in the safe operating range for the pump. - d) Check vibration, noise level and surface temperature at the bearings to confirm satisfactory operation. - e) Check dirt and dust is removed from areas around close clearances and motors. Our specialist service personnel can help with preventative maintenance records and provide condition monitoring for temperature and vibration to identify the onset of potential problems. If any problems are found the following sequence of actions should take place: - a) Refer to section 8, Faults; causes and remedies, for fault diagnosis. - b) Ensure equipment complies with the recommendations in this manual. - c) Contact Flowserve if the problem persists. #### 6.2.1 Routine Inspection (daily/weekly) The following checks should be made and the appropriate action taken to remedy any deviations. - a) Check operating behavior; ensure noise, vibration and bearing temperatures are normal. - b) Check that there are no abnormal fluid or lubricant leaks (static and dynamic seals) and that any sealant systems (if fitted) are full and operating normally. - c) Check that shaft seal leaks are within acceptable limits - d) Check the level and condition of lubrication oil. On grease lubricated pumps, check running hours since last recharge of grease or complete grease change. - e) Check any auxiliary supplies eg. heating/cooling (if fitted) are operating correctly. - f) Refer to the manuals of any associated equipment if routine checks needed. ## 6.2.2 Periodic Inspection (every 6 Month) a) CAUTION Check foundation bolts for security of attachment and corrosion. - b) Check pump operation hours to determine if bearing lubricant shall be changed. - The coupling should be checked for correct alignment and worn driving elements. Refer to the manuals of any associated equipment for periodic checks needed. #### 6.3 Spare parts #### 6.3.1 Ordering of spares When ordering spare parts we need the following information: - 1. pump type and pump size - 2. serial number of the pump - 3. number of the required spare parts - 4. reference number and name of the part as listed in the part list or in the sectional drawing Example: for WMA2 pump: WMA2, serial number G202222/01 1 piece impeller Pos. 2200 The serial number of each pump is indicated on the name plate. If the material should be changed from the original delivered one, additionally indicate the exact material specification. If ordered impellers shall have smaller or larger outer diameter, indicate also with your order. Without a special remark the spare impellers will be delivered with the diameter of the original impellers. To ensure continuous satisfactory operation, replacement parts to the original design specification should be obtained from Flowserve. Any change to the original design specification (modification or use of a non-standard parts) will invalidate the pump's safety certification. ## 6.3.2 Storage of spares Spares should be stored in a clean dry area away from vibration. Inspection and retreatment of metallic surfaces (if necessary) with preservative is recommended at a 6 monthly interval. ## 6.4 Recommended spares | | Spares Recommended | | | | | | | | | |--------------------------------------|--------------------|----------|----|-------|-----------|-------|-----|--|--| | Part | | Start up | | | Normal Ma | | | | | | No. of identical pumps | 1 - 3 | 4 - 6 | 7+ | 1 - 3 | 4 - 6 | 7 - 9 | 10+ | | | | Case | | | | | | | 1 | | | | Head (case cover and stuffing box) | | | | | | | 1 | | | | Diffuser | | | | | | | 1 | | | | Motor | | | | | | | 1 | | | | Shaft (w/key) | | | | 1 | 1 | 2 | 1 | | | | Impeller | | | | 1 | 1 | 2 | 3 | | | | Mechanical seal complete (Cartridge) | 1 | 2 | 3 | 1 | 2 | 3 | 3 | | | | Shaft sleeve and stage bushing (set) | 1 | 2 | 3 | 1 | 2 | 3 | 3 | | | | Gaskets, O-rings (set) | 1 | 2 | 3 | 1 | 2 | 3 | 3 | | | ## 6.5 Fastener torques | | | Tightening t | orque M <sub>A</sub> Nm (lbf.ft) | | | |---------------|------------------------------------------|---------------------------------------------------------|------------------------------------------------------|--------------------------------------------|-----------------------------------------------------| | Size of screw | Duplex SS<br>(S32760, S31803,<br>1.4462) | Carbon Steel (NACE)<br>(A 193 Gr.B7M,<br>A 320 Gr. L7M) | Carbon Steel<br>(A 193 Gr. B7,<br>A 320 Gr. L7, 8.8) | Austenitic SS<br>(A 193Gr. B8MA)<br>(NACE) | Austenitic SS<br>(A 193 Gr. B8/B8M,<br>A4-70,A2-70) | | M 4 | 2 (1,5) | 2,4 (1,8) | 2,8 (2,1) | 0,9 (0,7) | 2 (1,5) | | M 5 | 3,9 (2,9) | 4,8 (3,6) | 5,6 (4,1) | 1,8 (1,4) | 3,9 (2,9) | | M 6 | 6,8 (5) | 8,3 (6,1) | 9,7 (7,1) | 3,2 (2,3) | 6,8 (5) | | M 8 | 16,2 (12) | 19,8 (14,6) | 23,1 (17) | 7,6 (5,6) | 16,2 (12) | | M 10 | 31,9 (23,6) | 39 (28,8) | 45,4 (33,5) | 14,9 (11) | 31,9 (23,6) | | M 12 | 55,4 (40,9) | 67,8 (50) | 78,8 (58,2) | 25,9 (19,1) | 55,4 (40,9) | | M 14 | 87,9 (64,9) | 107,5 (79,3) | 125,1 (92,3) | 41 (30,3) | 87,9 (64,9) | | M 16 | 134,6 (99,3) | 164,5 (121,4) | 191,4 (141,3) | 62,8 (46,4) | 134,6 (99,3) | | M 18 | 188 (139) | 230 (170) | 267 (197) | 88 (65) | 188 (139) | | M 20 | 263 (194) | 321 (237) | 373 (276) | 123 (90) | 263 (194) | | M 22 | 353 (260) | 431 (318) | 502 (370) | 165 (121) | 196 (145) | | M 24 | 453 (334) | 553 (408) | 644 (475) | 211 (156) | 251 (186) | | M 27 | 654 (483) | 799 (590) | 930 (686) | 305 (225) | 363 (268) | | M 30 | 892 (658) | 1090 (805) | 1269 (936) | 416 (307) | 496 (366) | | M 33 | 1200 (886) | 1467 (1082) | 1707 (1260) | 560 (413) | 667 (492) | | M 36 | 1550 (1144) | 1895 (1398) | 2205 (1627) | 723 (534) | 861 (636) | | M 39 | 1988 (1467) | 2430 (1793) | 2827 (2086) | 928 (685) | 1104 (815) | | M 42 | 2472 (1824) | 3021 (2229) | 3515 (2594) | 1153 (851) | 1373 (1013) | | M 45 | 3061 (2259) | 3741 (2761) | 4354 (3213) | 1429 (1054) | 1701 (1255) | | M48 | 3703 (2732) | 4526 (3340) | 5266 (3886) | 1728 (1275) | 2057 (1518) | | M64 | 8862 (6539) | 10831 (7993) | 12604 (9301) | 4136 (3052) | 4923 (3633) | Above mentioned torques are for all screwed unions, which works under dynamical load. For all other connections you can use a corresponding smaller torque. ## 6.6 Setting impeller clearance For axial rotor setting see section 5 Commissioning startup, operation and shutdown. ## 6.7 Disassembly Refer to section 1.6, Safety, before dismantling the pump. Before dismantling the pump for overhaul, ensure genuine Flowserve replacement parts are available. Refer to sectional drawings for part numbers and identification. #### 6.7.1 Dismantling of pump - To avoid a damage of the mechanical seal first of all the assembling jigs on the seal end plate have to be turned in the groove of the shaft sleeve and must be fixed. Additional loose the clamping unit which fixes the shaft sleeve on the shaft. - 2) Loosen hex nuts [6581.1] which connect the pump casing [1110] with the suction elbow [1320]. Then the complete pump can be removed from the piping. For easy dismantling we recommend to put the pump in horizontal position. - 3) Remove the pump casing from the bearing lantern [3140] by loosen the hex nuts [6581.2]. Fix the both hexagon head bolt [6577.2] to press the pump casing from the centering of the stuffing box lantern. - 4) Loose the inducer (right hand thread) [2215]. - 5) Pull the 1<sup>st</sup> impeller from the shaft. As the impeller is fitted relatively strong on the shaft, use as support the two threads on the shroud of the impeller. - 6) After loosing the socket head cap screws [6579.1], it is possible to remove the interstage plate [1471] of the pump casing cover [1221]. - 7) Remove bearing sleeve [3400] and second impeller from the shaft. - 8) Remove the liner for impeller [1649] of the pump casing cover [1221]. - 9) Loosen the hexagon head bolt [6577.1] and take the pump casing cover including the Cartridge mechanical seal from the shaft. For the further disassembling of the mechanical seal refer to the following chapter. - 10) Loosen the clamping ring [2542] which fixes the pump shaft on the motor shaft. - For disassembling of the motor please refer to the instruction manual of the motor #### 6.7.2 Dismantling of shaft seal - 1) Turn the assembling jigs out of the groove of the shaft sleeve. - 2) Loosen the hex nuts [6581.4] from the studs [6572.4] to remove the Cartridge unit from the pump casing cover [1221] - Now the mechanical seal can easily be changed or overhauled. Refer to specific manufacturer's instructions of mechanical seal. ## 6.8 Examination of parts - Check whether any part of pump casing or impeller was damaged by corrosion or erosion. Liquid channels have to be clean and clear. - 2) All liquid channels must be cleaned and free of rust and mud on impeller! If machining of any impeller is necessary it must be rebalanced dynamically after this work. The balancing of the impellers is Q 2,5 according ISO 1940. - 3) Check the total run out of the shaft when mounted. The maximum allowable value is 0,05 mm measured on the fit of the impeller. - 4) Especially by pumping aggressive media pay attention to chemical corrosion on the surfaces of shaft and sleeve which are touched by the liquid. The shaft sleeves must have a clean and even surface at the area of the rotating unit of the mechanical seal, otherwise it will fail in operation. - 5) Defective shafts and sleeves shall be replaced if a machining is impossible (in accordance with tolerances respectively with run-out of shaft). - 6) Check the inner surface of the impeller hub, the impeller must have a proper fit on the shaft! Any loose impeller will cause vibrations and destroy shaft and bearings. The fit between shaft and impeller hub is Ø38 G5/h5 ISO. - 7) All defective seals respectively O-rings have to be replaced. - At a complete overhaul of the pump all seals and O-rings should be renewed depending on the duration of service, all roller bearings should be renewed, too. #### 6.9 Assembly To assemble the pump consult the sectional drawings. Ensure threads, gasket and O-ring mating faces are clean. Apply thread sealant to non-face sealing pipe thread fittings. #### 6.9.1 Assembly of the pump - 1) Be sure that all parts are clean - 2) For assembling of the pump use reverse procedure as described above. Important is the axial adjustment of the rotor 5.3.1. - 3) For all torques refer to chapter "Technical data". - 4) Check whether you can turn rotor by hand. #### 6.9.2 Assembly of shaft seal - Replacing the mechanical seal extreme cleanness is recommended. The sealing faces of the mechanical seal must be free of scratches or other damages and must be cleaned once again before assembly. - 2) Before sliding the rotating parts on the shaft respectively on the shaft sleeve, the fits must be sufficiently lubricated with a molykote paste. Take care that the sealing faces remain clean and no grease touches them. - If a mechanical seal with pump ring for medium circulation is used pay attention to the rotation of pump and pump ring. - 4) At assembling the seal end plate [4212] pay attention to the position of piping connections for injection or quench (refer to shaft seal drawing). - 5) For assembly of shaft seal use the reverse procedure as described in the chapter "Dismantling of shaft seal" before. Important is the fixing of the mechanical seal by the assembling jigs. So a damage of the mechanical seal during further assembling can be avoided. CAUTION Before start up the assembling jigs must absolute turned out of the groove of the shaft sleeve! ## 7.0 <u>AUXILIARIES</u> #### 7.1 Seal and seal systems # 7.1.1 Dual Mechanical Seal unpressurized with API-Plan 11+52 Note: Refer to mechanical seal drawing and auxiliary piping drawing. The pump is equipped with a dual mechanical seal. The cartridge design allows to change the mechanical seal without taking it apart. Try to turn the rotor by hand. If the rotor cannot be turned readjust it following procedure in section 5.3.1 Adjusting of the rotor. The mechanical seal requires no adjustment anymore. Check if the mounting plates are already swung out. Actions after start up: Check all connections to the seal gland and the mechanical seal itself against leakage. Check the temperature of the seal gland. I slight increase of temperature may be observed during the run in period. The faces of the inner mechanical seal are flushed by the product (API Plan11). In Plan 11, product is routed from the pump discharge via an orifice to the seal chamber to provide cooling for the seal and to vent air or vapors from the seal chamber. Fluid then flows from the seal cavity back into the process stream. Between the inner mechanical seal and the outer (atmospheric) mechanical seal is a liquid buffer fluid, which is unpressurized (API Plan 52). The buffer fluid is contained in a seal pot (refer to drawing of the seal pot), which is vented to a vent system, thus maintaining the buffer fluid pressure close to atmospheric. Inner seal leakage will be product leakage into the buffer fluid. There will always be some leakage (max.5 ml/hour). Plan 52 is used for flashing liquids, which have a vapour pressure higher then the buffer fluid pressure. So the product will flash in the seal pot and the vapour can escape to the vent system. All screw / flange connections have to be proofed. Straight screw joints made of stainless steel have to be tightened especially carefully. Fill the seal system with a suitable buffer fluid (refer to lubrication table). Ensure that the valve GV for the connection V is open (Barrier/buffer fluid vessel drawing). Open the Block & Bleed valve to allow proper function of the PSH (set point 0.5 bar allow proper function of the PSH (set point 0.5 bar (7.25 psi) above flare pressure). Open all necessary valves in the cooling and auxiliary piping and check the flow. **CAUTION** Disassembly of the seal cartridge is only allowed by authorized personal. Contact Flowserve for any service of the mechanical seal. We recommend to have a spare cartridge seal on stock for easy replacement. # 7.1.2 Dual Mechanical Seal pressurized with API-Plan 53a Note: Refer to mechanical seal drawing and auxiliary piping drawing. The pump is equipped with a dual mechanical seal in face to back configuration, back to back configuration or face to face configuration. Actions before first start up: The pump will be delivered with correct vertical adjustment of the rotor. Try to turn the rotor by hand. If the rotor cannot be turned readjust it following procedure in section 5.3.1 *Adjusting of the rotor.* The mechanical seal requires no adjustment anymore. Check if the mounting plates are already swung out. Actions after start up: Check all connections to the seal gland and the mechanical seal itself against leakage. Check the temperature of the seal gland. I slight increase of temperature may be observed during the run in period. Plan 53 pressurized dual seal systems are used in services where no leakage to atmosphere can be tolerated. A Plan 53a system consists of dual mechanical seals with a liquid barrier fluid between them. The barrier fluid is contained in a seal pot which is pressurized to a pressure of approximately 1.5 bar (23 psi) greater than the pump seal chamber. Inner seal leakage will be barrier fluid leakage into the product. There will always be some leakage (max.5 ml/hour). The leakage rate is monitored by monitoring the seal pot level. The product must be able to accommodate a small amount of contamination from the barrier fluid. The seal pot pressure must be maintained at the proper level. If the seal pot pressure drops, the system will begin to operate like a Plan 52, or unpressurized dual seal, which does not offer the same level of sealing integrity. Specifically, the inner seal leakage direction will be reversed and the barrier fluid will, over time, become contaminated with the process fluid with the problems that result, including possible seal failure. Fill the seal system with a suitable barrier buffer fluid (refer to lubrication table). Open all necessary valves in the cooling and auxiliary piping and check the flow. Disassembly of the seal cartridge is only allowed by authorized personal. Contact Flowserve for any service of the mechanical seal. We recommend to have a spare cartridge seal on stock for easy replacement. ## 7.2 Changing of mechanical seal It is recommended to dismantle the mechanical seal after 4.000 hours of running and to check the condition or the stationary and rotating faces. In any case, if one or both parts are worn, the stationary and rotating faces should be lapped or renewed that they are absolutely flat and free of scratches. The time between two checks of mechanical seal depends on the experience which have been made. ## 8.0 FAULTS; CAUSES AND REMEDIES #### FAULT SYMPTOM | | FAULI STMPTOM | | | | | | | | | | | | | | | |----|------------------------------------------|----|-----|------|-----|-----|------|------|-----------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|--| | Pı | Pump overheats and seizes | | | | | | | | | | | | | | | | ₩ | | | | | | | | | | | | | | | | | | <b>↓</b> | Pι | ımp | iv c | bra | tes | or i | is n | ois | у | | | | | | | | | î | M | ech | ani | cal | sea | al h | as : | short life | | | | | | | | | | î | М | ech | ani | cal | sea | al le | aks excessively | | | | | | | | | | | | | | | | | | | | | | | | | <b>↓</b> Pump loses prime after starting | | | | | | | | | | | | | | | | | | | | | | î | Ins | suf | fficient pressure developed | | | | | | | | | | | | | | | î | In | suff | icient capacity delivered | | | | | | | | | | | | | | | Ĥ | Pι | ımp does not deliver liquid | | | | | | | | | | | | | | | | 1 | PROBABLE CAUSES | POSSIBLE REMEDIES | | | | | | | | | | | | | | | | A. SYSTEM TROUBLES | | | | | | | • | | | | | | | | | • | Pump not primed. | Check complete filling | | | | | | | | • | | | | • | | • | • | Pump or suction pipe not completely filled with liquid. | Check and complete filling | | | | | | • | | • | | | | • | | • | • | Suction lift too high or level too low. | Check NPSHa>NPSHr, proper submergence, losses at strainers / fittings | | | | | | | | | | | | • | • | • | | Excessive amount of air or gas in liquid. | Check and purge from pipes | | | | | | | | | | | | • | | • | • | Air or vapour pocket in suction line. | Check suction line design for pockets | | | | | #### FAULT SYMPTOM | | UL. | | | | | | | | | | | |----|---------------------------------|---|-----|---|---|----|-----|------|-------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------| | Pu | | | erh | | | | | | | | | | † | | | ngs | | | | | | | | | | | Pump vibrates or is noisy | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ↓ Pump requires excessive power | | | | | | | | | | | | | | | | | 1 | Pι | ımp | o lo | ses | prime after starting | | | | | | | | | î | In | suf | ficie | ent pressure developed | | | | | | | | | | î | In | suf | icient capacity delivered | | | | | | | | | | | ı | 1 | Imp does not deliver liquid | | | | | | | | | | | • | IJ. | PROBABLE CAUSES | POSSIBLE REMEDIES | | | | | | | | • | | • | • | Air leaks into suction line. | Check airtight pipe then joints and gaskets | | | | | | | | • | | • | | Air leaks into pump through mechanical seal, | Check airtight assembly then joints and | | | | | | | | | | | | sleeve joints, casing joint or pipe lugs. | gaskets | | | | • | | | | | | • | | Foot valve too small. | Investigate replacing the foot valve | | | | • | | | | | | • | | Foot valve partially clogged. | Clean foot valve | | | | • | | | | • | | • | • | Inlet of suction pipe insufficiently submerged. | Check cut out system design | | | | | | | | | • | • | • | Total head of system higher than differential head of pump. | Check discharge head and head losses in discharge pipe at the valve settings. Check back pressure is not too high | | | | | | | • | | | | | Total head of system lower than pump design head. | Throttle at discharge valve or ask Flowserve if the impeller can be trimmed | | | | | | | • | | | | | Specific gravity of liquid different from design. | Consult Flowserve | | | | | | | • | | • | • | | Viscosity of liquid differs from that for which designed. | Consult Flowserve | | • | | • | | | | | | | | Operation at very low capacity. | Measure value and check minimum permitted | | | • | • | | | • | | | | | Operation at high capacity. | Measure value and check maximum permitted | | | | | | | | | | | | B. MECHANICAL TROUBLES | | | • | • | • | • | • | • | | | | | Misalignment due to pipe strain. | Check the flange connections and eliminate strains using elastic couplings or a method permitted | | | | • | | | | | | | | Improperly designed foundation. | Check setting of baseplate: tighten, adjust, grout base as required | | | • | • | • | • | • | | | | | Shaft bent. | Check shaft runouts within acceptable values | | • | • | • | | | • | | | | | Rotating part rubbing on stationary part internally. | Check for signs of this and consult Flowserve if necessary | | • | • | • | • | • | | | | | | Bearings worn | Replace bearings | | | | | | | • | | • | • | | Wearing ring surfaces worn. | Replace worn wear ring/ surfaces | | | | • | | | | | • | • | | Impeller damaged or eroded. | Replace impeller and check reason | | | | | | • | | | | | | Leakage under sleeve due to joint failure. | Replace joint and check for damage | | | | | • | • | • | | | | | Mechanical seal improperly installed. | Check alignment of faces or damaged parts and assembly method used | | | | | • | • | • | | | | | Incorrect type of mechanical seal for operating conditions. | Consult Flowserve | | • | • | • | • | • | | | | | | Shaft running off center because of worn bearings or misalignment. | Check misalignment and correct if necessary. If alignment satisfactory check bearings for excessive wear | | • | • | • | • | • | | | | | | Impeller out of balance resulting in vibration. | Check and consult Flowserve | | | | | • | • | • | | | | | Abrasive solids in liquid pumped. | Check and consult Flowserve | | | | | • | • | | | | | | Mechanical seal was run dry. | Check mechanical seal condition and source of dry running and repair | | | | | • | • | | | | | | Internal misalignment due to improper repairs causing impeller to rub. | Check method of assembly, possible damage or state of cleanliness during assembly | #### **FAULT SYMPTOM** | Pump overheats and seizes | | | | | | | | | | | | | | | | | |---------------------------|--------------------------|----|-----|-------------------------|------------------------------|---------------------------------|---------------------------------------|----|--------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|--|--| | ₩ | Bearings have short life | | | | | | | | | | | | | | | | | | <b>↓</b> | Pu | ımp | mp vibrates or is noisy | | | | | | | | | | | | | | | | 1 | Me | ech | chanical seal has short life | | | | | | | | | | | | | | | | IJ | Me | ch | chanical seal leaks excessively | | | | | | | | | | | | | | | • | IJ | | ump requires excessive power | | | | | | | | | | | | | | | | * | ₩. | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | ψ | | Pump loses prime after starting | | | | | | | | | | | | | | | | | ħ | Insufficient pressure developed | | | | | | | | | | | | | | | | | | Ĥ | In | nsufficient capacity delivered | | | | | | | | | | | | | | | | | î | Pι | ump does not deliver liquid | | | | | | | | | | | | | | | | | Ů. | PROBABLE CAUSES | POSSIBLE REMEDIES | | | | | | | • | • | • | | | | | | | | Excessive thrust caused by a mechanical failure inside the pump. | Check wear condition of Impeller, its clearances and liquid passages | | | | | | | | • | • | | | | | | | | Excessive grease in ball bearings. | Check method of regreasing | | | | | | | | • | • | | | | | | | | Lack of lubrication for bearings. | Check hours run since last change of lubricant, the schedule and its basis | | | | | | | | • | • | | | | | | | | Improper installation of bearings | Check method of assembly, possible damage or state of cleanliness during assembly and type of bearing used | | | | | | | | • | • | | | | | | | | Damaged bearings due to contamination. | Check contamination source and replace damaged bearings | | | | | | | | | | | | | | | | | C. ELECTRICAL TROUBLES | | | | | | | | | | • | | | • | | • | • | | Wrong direction of rotation. | Reverse 2 phases on motor terminal box | | | | | | | | • | • | | | | | | • | | Motor running too slow, | Check motor terminal box connections | | | | | | ## 9.0 CERTIFICATION Certificates determined from the contract requirements are provided with these instructions where applicable. Examples are certificates for CE marking, ATEX marking etc. If required, copies of other certificates sent separately to the Purchaser should be obtained from the Purchaser for retention with these User Instructions. # 10.0 OTHER RELEVANT DOCUMENTATION AND MANUALS ## 10.1 Supplementary user instructions Supplementary instructions determined from the contract requirements for inclusion into user Instructions such as for a driver, instrumentation, controller, sub-driver, seals, sealant system, mounting component etc are included in the Data Book. If further copies of these are required they should be obtained from the supplier for retention with these user instructions. Where any pre-printed set of user instructions are used, and satisfactory quality can be maintained only by avoiding copying these, they are included at the end of these user instructions such as within a standard clear polymer software protection envelope. ## 10.2 Change notes If any changes, agreed with Flowserve, are made to the product after its supply, a record of the details should be maintained with these User Instructions. ## 10.3 Additional sources of information ## Reference 1: NPSH for Rotordynamic Pumps: a reference guide, Europump Guide No. 1, Europump & World Pumps, Elsevier Science, United Kingdom, 1999. #### Reference 2: Pump Handbook, 2<sup>nd</sup> edition, Igor J. Karassik et al, McGraw-Hill Inc., New York, 1993. #### Reference 3: ANSI/HI 1.1-1.5 Centrifugal Pumps - Nomenclature, Definitions, Application and Operation. #### Reference 4: ANSI B31.3 - Process Piping. ## 10.4 Abbreviations | Quantity | ISO unit | ISO unit abbreviation | Multiplication<br>Factor <sup>1</sup> | US unit | US unit<br>Abbreviation | |------------------------|--------------------------------------------|-----------------------|---------------------------------------|----------------------------|-------------------------| | Area | square meter<br>square centimeter | m²<br>cm² | 10.764<br>0.155 | square feet<br>square inch | ft²<br>in.² | | Capacity or Flow rate | Cubic<br>meter/hour | m³/h | 4.4033 | US Gallons/<br>minute | US gpm | | Force | Newton | N | 0.2248 | Pound force | lbf | | Head | meter | m | 3.28084 | feet | ft | | Heat Energy | kilo joule | kJ | 0.9478 | British<br>thermal unit | Btu | | Length | meter<br>millimeter<br>micrometer | m<br>mm<br>µm | 3.28084<br>0.03937<br>0.00003937 | feet<br>inch<br>inch | ft<br>in.<br>in. | | Mass | kilogram<br>gram | kg<br>g | 2.20462<br>0.035274 | pounds<br>ounces | lb.<br>oz. | | Moment of<br>Inertia | kilogram<br>square meter | kg.m² | 23.73 | pounds<br>square feet | lb.ft² | | Noise <sup>4</sup> | decibel | dBA | | | | | Power | kilowatt | kW | 1.34102 | horsepower | hp | | Pressure <sup>2</sup> | bar | bar | 14.5 | pounds/in.² | psi | | Rotational<br>Speed | revs per minute | r/min | | | | | Stress | Newton/square<br>millimetre | N/mm² | 145.0 | pounds/in.² | psi | | Temperature | degrees<br>Celsius | °C | (1.8 x °C) + 32 | degrees<br>Fahrenheit | °F | | Torque | Newton meter | Nm | 0.7376 | pound.feet | lbf.ft | | Unbalance | gram millimeter | g.mm | 0.001389 | ounce-inch | oz-in. | | Vibration <sup>3</sup> | millimetre/<br>second | mm/s | 0.03937 | inches/<br>second | in./sec | | Velocity | meter/second<br>millimeter/second | m/s<br>mm/s | 3.28084<br>0.03937 | feet/second inches/second | ft/sec<br>in./sec | | Viscosity | square millimetre/<br>second or centiStoke | cSt | | | | | Volume | cubic meter<br>liter | m³<br> | 264.2<br>33.81 | US Gallons<br>fluid ounce | US gal.<br>Fl.oz. | <sup>&</sup>lt;sup>1</sup> multiply the ISO unit by the multiplication factor to obtain US units <sup>&</sup>lt;sup>2</sup> where pressure is not stated to be absolute it is gauge <sup>&</sup>lt;sup>3</sup> where not stated to be peak it is r.m.s. $<sup>^{4}</sup>$ sound pressure level LpA, re 1m - 20microPa, or sound power level LwA re 1 pW when sound power is applicable ## AFTERMARKET DIRECTORY #### **OUR ADDRESS** Flowserve (Austria) GmbH Industriestraße B/6 A-2345 Brunn/Geb., AUSTRIA Tel: +43 / 2236 / 31530 Fax: +43 / 2236 / 31940 Mail: FPD-Brunn@flowserve.com IF YOU NEED ANY INFORMATIONS ON PRICES, QUOTATIONS FOR PARTS, FIELD SERVICE, REPAIRS... PLEASE CONTACT DIRECTLY OUR SPECIALISTS BY DIALING OUR PHONE NUMBER AND HIS EXTENSION | MANAGER | |-------------------------| | PARTS QUOTATIONS | | PARTS ORDER HANDLING | | FIELD SERVICE / REPAIRS | | SECRETARY | | EXPORT / INVOICING | | EXT. 297 | | |----------|--| | EXT. 236 | | | EXT. 237 | | | EXT. 205 | | | EXT. 232 | | | EXT. 238 | | MESSAGES CAN BE LEFT ALSO ON OUR ANSWERING MACHINE ## **IMPORTANT NOTES:** ## **PLEASE NOTE, THAT WARRANTY EXPIRES:** - <u>USE OF NON GENUINE FLOWSERVE AUSTRIA PARTS FOR MAINTENANCE AND REPAIRS</u> - NO USE OF OUR SERVICE PERSONAL IN CASE OF REPAIRS DURING WARRANTY PERIOD #### **RECOMMENDATION:** - STARTUP AND COMMISSION SERVICE DIAL: EXT 205 -PLEASE ASK FOR OUR SPECIAL RATES - PLEASE ALSO ASK OUR SERVICE PERSONAL ABOUT REPAIRING AND SERVICING YOUR PUMPS AFTER THE WARRANTY PERIOD ## Please quote your service: | Name of Cor | mpany: | Pumpdata: | | |-------------|--------|---------------------|--| | | son: | Type:<br>Serialno.: | | | Telephone: | | Serialno.: | | | Fax: | | | | | e-mail: | | | | | Country: | | | | Customer Service Fax: +43-2236-31940 #### Your Flowserve factory contacts: Flowserve (Austria) GmbH Industriestraße B6 2345 Brunn am Gebirge Austria Telefon: +43 2236 31530 Fax: +43 2236 377 540 Service & Repair Fax: +43 2236 31582 E.mail: FPD-Brunn@flowserve.com ## FLOWSERVE REGIONAL SALES OFFICES: #### **USA and Canada** Flowserve Corporation 5215 North O'Connor Blvd., Suite 2300 Irving, Texas 75039-5421 USA Telephone 1 972 443 6500 Fax 1 972 443 6800 #### Europe, Middle East, Africa Worthing S.P.A. Flowserve Corporation Via Rossini 90/92 20033 Desio (Milan) Italy Telephone 39 0362 6121 Fax 39 0362 303396 #### Latin America and Caribbean Flowserve Corporation 6840 Wynnwood Lane Houston, Texas 77008 USA Telephone 1 713 803 4434 Fax 1 713 803 4497 #### **Asia Pacific** Flowserve Pte. Ltd 10 Tuas Loop Singapore 637345 Singapore Telephone 65 67710600 Fax 65 6779 4607